53 research outputs found

    Making Superconducting Welds between Superconducting Wires

    Get PDF
    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as part of a persistent-current circuit having an inductance of 1 mH. A current was induced in a loop, and no attenuation of the current after a time interval 1,000 s was discernible in a measurement having a fractional accuracy of 10(exp -4): This observation supports the conclusion that the weld had an electrical resistance <10(exp -10) omega

    Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System

    Get PDF
    A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly

    Improved Sensing Coils for SQUIDs

    Get PDF
    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed

    Optimized Geometry for Superconducting Sensing Coils

    Get PDF
    An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity

    Reducing Field Distortion in Magnetic Resonance Imaging

    Get PDF
    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100

    Heterogeneous Superconducting Low-Noise Sensing Coils

    Get PDF
    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton

    EPR Imaging at a Few Megahertz Using SQUID Detectors

    Get PDF
    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use weaker applied magnetic fields: For example, for a resonance frequency of 1.4 MHz, one needs a magnetic flux density of 0.5 Gauss approximately the flux density of the natural magnetic field of the Earth

    A Wideband, Low-Noise Superconducting Amplifier with High Dynamic Range

    Get PDF
    Amplifiers are ubiquitous in electronics and play a fundamental role in a wide range of scientific measurements. From a user's perspective, an ideal amplifier has very low noise, operates over a broad frequency range, and has a high dynamic range - it is capable of handling strong signals with little distortion. Unfortunately, it is difficult to obtain all of these characteristics simultaneously. For example, modern transistor amplifiers offer multi-octave bandwidths and excellent dynamic range. However, their noise remains far above the fundamental limit set by the uncertainty principle of quantum mechanics. Parametric amplifiers, which predate transistor amplifiers and are widely used in optics, exploit a nonlinear response to transfer power from a strong pump tone to a weak signal. If the nonlinearity is purely reactive, ie. nondissipative, in theory the amplifier noise can reach the quantum-mechanical limit. Indeed, microwave frequency superconducting Josephson parametric amplifiers do approach the quantum limit, but generally are narrow band and have very limited dynamic range. In this paper, we describe a superconducting parametric amplifier that overcomes these limitations. The amplifier is very simple, consisting only of a patterned metal film on a dielectric substrate, and relies on the nonlinear kinetic inductance of a superconducting transmission line. We measure gain extending over 2 GHz on either side of an 11.56 GHz pump tone, and we place an upper limit on the added noise of the amplifier of 3.4 photons at 9.4 GHz. Furthermore, the dynamic range is very large, comparable to microwave transistor amplifiers, and the concept can be applied throughout the microwave, millimeter-wave and submillimeter-wave bands.Comment: 15 pages, 4 figures + supplementary informatio

    Microwave Crosstalk in Lumped Element Far-IR MKIDs

    Get PDF
    We have made close-packed far-infrared MKID arrays with ~ 250 pixels using TiN on silicon. Measurements show a large scatter in quality factor arising from crosstalk. This is confirmed by pump-probe experiments and EM simulations. Our new shielded resonator designs show very low crosstalk levels
    • ā€¦
    corecore